3.518 \(\int \frac{\sqrt [3]{a+b x^3}}{x^2} \, dx\)

Optimal. Leaf size=88 \[ -\frac{\sqrt [3]{a+b x^3}}{x}-\frac{1}{2} \sqrt [3]{b} \log \left (\sqrt [3]{b} x-\sqrt [3]{a+b x^3}\right )-\frac{\sqrt [3]{b} \tan ^{-1}\left (\frac{\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}+1}{\sqrt{3}}\right )}{\sqrt{3}} \]

[Out]

-((a + b*x^3)^(1/3)/x) - (b^(1/3)*ArcTan[(1 + (2*b^(1/3)*x)/(a + b*x^3)^(1/3))/Sqrt[3]])/Sqrt[3] - (b^(1/3)*Lo
g[b^(1/3)*x - (a + b*x^3)^(1/3)])/2

________________________________________________________________________________________

Rubi [A]  time = 0.0695022, antiderivative size = 138, normalized size of antiderivative = 1.57, number of steps used = 8, number of rules used = 8, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.533, Rules used = {277, 331, 292, 31, 634, 617, 204, 628} \[ \frac{1}{6} \sqrt [3]{b} \log \left (\frac{b^{2/3} x^2}{\left (a+b x^3\right )^{2/3}}+\frac{\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}+1\right )-\frac{\sqrt [3]{a+b x^3}}{x}-\frac{1}{3} \sqrt [3]{b} \log \left (1-\frac{\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )-\frac{\sqrt [3]{b} \tan ^{-1}\left (\frac{\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}+1}{\sqrt{3}}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^3)^(1/3)/x^2,x]

[Out]

-((a + b*x^3)^(1/3)/x) - (b^(1/3)*ArcTan[(1 + (2*b^(1/3)*x)/(a + b*x^3)^(1/3))/Sqrt[3]])/Sqrt[3] - (b^(1/3)*Lo
g[1 - (b^(1/3)*x)/(a + b*x^3)^(1/3)])/3 + (b^(1/3)*Log[1 + (b^(2/3)*x^2)/(a + b*x^3)^(2/3) + (b^(1/3)*x)/(a +
b*x^3)^(1/3)])/6

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt [3]{a+b x^3}}{x^2} \, dx &=-\frac{\sqrt [3]{a+b x^3}}{x}+b \int \frac{x}{\left (a+b x^3\right )^{2/3}} \, dx\\ &=-\frac{\sqrt [3]{a+b x^3}}{x}+b \operatorname{Subst}\left (\int \frac{x}{1-b x^3} \, dx,x,\frac{x}{\sqrt [3]{a+b x^3}}\right )\\ &=-\frac{\sqrt [3]{a+b x^3}}{x}+\frac{1}{3} b^{2/3} \operatorname{Subst}\left (\int \frac{1}{1-\sqrt [3]{b} x} \, dx,x,\frac{x}{\sqrt [3]{a+b x^3}}\right )-\frac{1}{3} b^{2/3} \operatorname{Subst}\left (\int \frac{1-\sqrt [3]{b} x}{1+\sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,\frac{x}{\sqrt [3]{a+b x^3}}\right )\\ &=-\frac{\sqrt [3]{a+b x^3}}{x}-\frac{1}{3} \sqrt [3]{b} \log \left (1-\frac{\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )+\frac{1}{6} \sqrt [3]{b} \operatorname{Subst}\left (\int \frac{\sqrt [3]{b}+2 b^{2/3} x}{1+\sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,\frac{x}{\sqrt [3]{a+b x^3}}\right )-\frac{1}{2} b^{2/3} \operatorname{Subst}\left (\int \frac{1}{1+\sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,\frac{x}{\sqrt [3]{a+b x^3}}\right )\\ &=-\frac{\sqrt [3]{a+b x^3}}{x}-\frac{1}{3} \sqrt [3]{b} \log \left (1-\frac{\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )+\frac{1}{6} \sqrt [3]{b} \log \left (1+\frac{b^{2/3} x^2}{\left (a+b x^3\right )^{2/3}}+\frac{\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )+\sqrt [3]{b} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )\\ &=-\frac{\sqrt [3]{a+b x^3}}{x}-\frac{\sqrt [3]{b} \tan ^{-1}\left (\frac{1+\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}}{\sqrt{3}}\right )}{\sqrt{3}}-\frac{1}{3} \sqrt [3]{b} \log \left (1-\frac{\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )+\frac{1}{6} \sqrt [3]{b} \log \left (1+\frac{b^{2/3} x^2}{\left (a+b x^3\right )^{2/3}}+\frac{\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0084665, size = 49, normalized size = 0.56 \[ -\frac{\sqrt [3]{a+b x^3} \, _2F_1\left (-\frac{1}{3},-\frac{1}{3};\frac{2}{3};-\frac{b x^3}{a}\right )}{x \sqrt [3]{\frac{b x^3}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^3)^(1/3)/x^2,x]

[Out]

-(((a + b*x^3)^(1/3)*Hypergeometric2F1[-1/3, -1/3, 2/3, -((b*x^3)/a)])/(x*(1 + (b*x^3)/a)^(1/3)))

________________________________________________________________________________________

Maple [F]  time = 0.03, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{2}}\sqrt [3]{b{x}^{3}+a}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a)^(1/3)/x^2,x)

[Out]

int((b*x^3+a)^(1/3)/x^2,x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/3)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/3)/x^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [C]  time = 1.32542, size = 41, normalized size = 0.47 \begin{align*} \frac{\sqrt [3]{a} \Gamma \left (- \frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{3}, - \frac{1}{3} \\ \frac{2}{3} \end{matrix}\middle |{\frac{b x^{3} e^{i \pi }}{a}} \right )}}{3 x \Gamma \left (\frac{2}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a)**(1/3)/x**2,x)

[Out]

a**(1/3)*gamma(-1/3)*hyper((-1/3, -1/3), (2/3,), b*x**3*exp_polar(I*pi)/a)/(3*x*gamma(2/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{3} + a\right )}^{\frac{1}{3}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/3)/x^2,x, algorithm="giac")

[Out]

integrate((b*x^3 + a)^(1/3)/x^2, x)